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In this paper, the roles of interbond angles, bond lengths, and electric charges in in-
termolecular electrostatic Chiral Discrimination (ChD) in the regimes of high temperature
T and large intermolecular distance D are investigated. When both interacting molecules
have asymmetries involving only interbond angles, or bond lengths, or charges, ChD varies
as D−17, D−21, D−24, respectively. In addition, ChD due to dispersion forces is studied.
Given the popularity of computer calculations, the estimation of ChD between the various
types of molecules can be used as a testbed for accuracy.

1. Introduction

The study of chiral molecules has been under greater and deeper scrutiny with
each advance in biotechnology and drug research [22,30]. A molecule is chiral when
its mirror image (i.e., enantiomer) is not superimposable on the original molecule. The
interaction between two chiral molecules usually becomes different when one of the
molecules is replaced by its enantiomer. This interaction difference is the basis of
Chiral Discrimination (ChD) which can appear as a difference in energy levels [29],
in the rotation of linearly polarized radiation [21], in physiological effects [23,30], in
thermodynamic properties [27], and in many other phenomena. Since taking the mirror
image does not reverse the course of time, the nuclear weak force may be evaluated
by ChD studies [17,20]. However, since the weak force has, at least on a short time
scale, a much smaller effect on ChD than electrostatic (ES) and electrodynamic (ED)
forces, the vast majority of current research is focused on the ES and ED aspects of
ChD. Often, ChD effects are so small compared to experimental and computational
errors that some studies [6,12,19] contradict others [5,10,11]. Thus, some finer points
of ChD remain to be studied.

Recently, Salem et al. [26] studied ES ChD between two molecules whose asym-
metries involved only the charges. ChD was evaluated as the difference in the Boltz-
mann averaged intermolecular energy. Each molecule has a methane-like skeleton,
denoted as CX1X2X3X4, and rotates freely about the C atom which is fixed in space.
The Xk’s have different electric charges, the C–Xk bonds are all equal in length, and
the angles between two bonds C–Xk and C–Xm are all arccos(−1/3) ≈ 109.5◦. The
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C-to-C distance is D and large compared to the C–X bond lengths. For a temperature
T such that kBT is much greater than the dipole–dipole interaction (kB = molecular
Boltzmann gas constant) and for 3 different values of D, ChD was evaluated numeri-
cally. With non-convergence for the smallest D, Salem concluded that ChD appeared
to vary as D−22. Previous theoretical studies [7–9] of classical (i.e., non-quantum) ES
ChD showed that in general it varies as D−17; however, the roles in ChD of asym-
metries due to charges, bond lengths, and interbond angles were not investigated. In
the numerical study [26], the precision (20 significant figures) and the large number
(≈107) of relative intermolecular orientations for each D are such that one concludes
beyond reasonable doubt that ChD does not vary as D−17 for the above-mentioned
molecules. Arguments are presented here to indicate that, in the above case, ChD
varies as D−24.

Recently, Andelman et al. [1–3] studied ChD, due to dispersion forces charac-
terized by the Lennard-Jones (LJ) potential, between two methane-like molecules of
the CX1X2X3X4 type whose asymmetries are due partially to bond length difference.
Each Xk has zero electric charge but different non-zero LJ parameters εk and σk; the
angles between C–Xk and C–Xm bonds are all 109.5◦. The LJ energy potential ELJ

between Xk and Xm separated by distance D is [3]

ELJ = 2(εkεm)1/2[((σk + σm)/D
)12 − 2

(
(σk + σm)/D

)6]
. (1.1)

Although ChD was evaluated for D, large and small, with about 107 pos-
sible relative intermolecular orientations used for each value of D, Andelman
stated that the calculations were not precise enough to yield reliable measure of
ChD. One shows that, for the molecules considered by Andelman, ChD varies
as D−36.

One focuses on asymmetric molecules/ions with 3 charges since, as long as
translation is forbidden, 3 charges is the minimum to demonstrate ChD in the freely
rotating case. If translation is allowed, 4 charges are necessary [31]. The charge
distribution of each molecule in the studies of [1–3,26] can be seen as a set of 4
triads ((X1X2X3), (X1X2X4), (X1X3X4), (X2X3X4)) which interacts with the set of
triads of the other molecule; ChD is shown [26] to be due mainly to these inter-triad
interactions. Each molecule/ion rotates freely, its center of rotation being fixed in
space, has pointlike charges, and has zero polarizability. D is the distance between
the two centers of rotation. The radii, or bonds, are line segments of constant lengths
(no stretching vibrational modes) connecting the charges to the rotation center. The
bond lengths are of the same order of magnitude and D is considered large when
D is greater than 10 times the average bond length. The angles between two given
radii are constant (no bending vibrational modes). Although the term molecule is used
generally for chemical species with zero net charge, the term will be used in this paper
to include ions.
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2. Overview of necessary conditions for thermodynamic ES ChD

A measure of ChD can be ∆EaA [7–9],

∆EaA = 〈V (a,A)〉 − 〈V (a,A∗)〉 = −∆EaA∗ = −∆Ea∗A. (2.1)

Molecules a and A are chiral; A∗ is the enantiomer of A. V (a,A) is the ES potential
between the molecular pair (a,A) and is given as [14]

V (a,A) =
∞∑
n=0

∞∑
N=0

n<∑
m=−n<

C(n;N ;m)qa(n;m)qA(N ,−m)D−n−N−1, (2.2)

C(n;N ;m) =
(−1)n+m(n+N )!

(n+ |m|)!(N + |m|)! ; (2.3)

n< is the smaller of the two integers n and N , qx(n,m) is the laboratory-
fixed multipole of molecule x, of principal and orbital numbers n and m, re-
spectively, and changes with different molecular orientations. Since C(n;N ;m) =
C(n;N ;−m), the imaginary part of qa(n,m)qA(n,−m) cancels out the imaginary part
of qa(n,−m)qA(n,m) and, thus, V (a,A) has no imaginary part overall. 〈V (a,A)〉,
equal to −(∂ lnZ(a,A)/∂β), is the Boltzmann-weighted average of V (a,A). β =
(kBT )−1 and Z(a,A) is the partition function:

Z(a,A) =

∫∫
exp
[
−βV (a,A)

]
dωa dωA. (2.4)

dωx denotes the set of increments in the 3 Euler angles of molecule x; the integrals
in or A. Henceforth, the subscript x denotes either molecule a or A. The integrals
in (2.4) are over all possible ranges of angles. In the high T , large D regime one has
βV (a,A)� 1 and 〈V (a,A)〉 can be written as a formal power series in β:

〈V (a,A)〉 =
∞∑
k=0

βkVaA;k. (2.5)

The ChD discussion boils down to the analysis of the VaA;k terms which have been
studied to some depth by others [7–9] and which are proportional to[

k∏
s=0

Qa(ns, ls)

][
k∏
t=0

QA(nt, lt)

]
D−(k+1)−N (a)−N (A), (2.6)

N (x) =
k∑
b=0

nb. (2.7)

Qx(n, l) is the molecule-fixed multipole moment of principal number n and orbital
number l for molecule x.N (x) relates to molecule x. The nb’s in (2.7) are the principal
numbers for the Qx(n, l)’s in (2.6).
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The laboratory-fixed multipoles qA(n,m) vary as the molecular orientations
change. The molecule-fixed multipoles QA(n, l) are independent of molecular ori-
entation with respect to the laboratory coordinate system. QA(n, l) and qA(n,m) are
related via the rotation functions D(n;m, l) which are functions of the Euler angles of
molecular rotation [7–9]. The following conditions (2.8), (2.9) are conditions for the
rotational averages of the products of D(n;m, l) to be non-zero. The necessary ChD
conditions are [9]

L(x) =
k∑
s=0

ls = 0, (2.8)

k−1∑
s=0

ns > nk, if nh > nj when h > j, (2.9)

Im

[
k∏
s=0

Qx(ns, ls)

]
6= 0, (2.10)

N (x) =
k∑
b=0

nb = odd integer. (2.11)

L(x) relates to molecule x and the ls’s in (2.10) are the orbital numbers for the
Qx(n, l)’s in (2.8). Further discussion of (2.9) is given by previous authors [9,25]. If
there is an orientation of axes such that (2.10) is violated, ChD does not appear in
the term under question. Thus the discussion boils down to finding any orientation to
make (2.10) non-valid; if no such orientation exists, then ChD is present.

3. A novel orientation of molecule-fixed coordinates

To understand the role of charges, bond lengths, and interbond angles in ChD,
a novel coordinate orientation with respect to a molecule is used. One aligns the z-axis
(θ = 0 line) along vector ~S,

~S =
[(
r̂1 × r̂2

)
+
(
r̂2 × r̂3

)
+
(
r̂3 × r̂1

)]
, (3.1)

instead of doing the usual alignment along the molecular dipole moment. r̂y = ~ry/|~ry|,
the subscript y being 1, 2, or 3. The coordinate origin is collocated with the center of
rotation. Since (

r̂1 · ~S
)

=
(
r̂2 · ~S

)
=
(
r̂3 · ~S

)
=
(
r̂1 · r̂2 × r̂3

)
, (3.2)

then θ1 = θ2 = θ3 and the Pmn (cos θ)’s can be ignored in the ChD discussion. Dif-
ferences (φk − φm) in the azimuthal coordinates reflect differences in (r̂k · r̂m), the
subscripts k and m being 1, 2, or 3.
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4. Characterization of 3-Charge Molecules (3CM)

To understand the role of charges, bond lengths, and interbond angles in ChD,
3CM’s are characterized in terms of the number of inequalities amongst their struc-
tural parameters. The degree of asymmetry may be characterized by the number of
inequalities between interbond angles (A), bond lengths (R), and charges (C). If the
interbond angles Xk–C–Xm are all equal, then the 3CM has an A0 character since there
are no inequalities between the angles; if the angles are all different from one another,
then the 3CM has an A3 character since there are 3 inequalities: angle(X1–C–X2) 6=
angle(X2–C–X3) 6= angle(X1–C–X3) 6= angle(X1–C–X2).

Since a 3CM can be only A0, A2, and A3 (analogously for bond lengths and
charges), there are 27 types (AxRyCz) of 3CM’s. Because 3CM’s of type A0R0C0,
A2R0C0, A0R2C0, A0R0C2 are achiral, there are 23 types of asymmetric 3CM’s
(A3CM). One notes there are chiral and achiral 3CM’s of types A2R2C0, A2R0C2,
A0R2C2, and A2R2C2.

5. Thermodynamic ES ChD between two A3CM’s

In the following, one uses the definition [14]

Qx(n,m) =
3∑
s=1

esr
n
sP

m
n (cos θs) exp(imφs). (5.1)

es and rs are, respectively, the sth charge and the (center of rotation)–(sth charge)
distance. Pmn (cos θ) is an associated Legendre function. One writes out the left-hand
side of (2.9) in terms of its charge (es), bond length (rs), and interbond angle (θs)
components. After permuting a pair of indices of the bond length components (for the
A0R3C0, A0R2C2 molecules), or of the charge components (for the A0R0C3, A0R2C2

molecules), one ascertains if the permutation changes the value of said terms. Since
permuting a pair of indices is akin to producing the enantiomer, if permuting any pair
of indices leaves a term unchanged, then the said term does not contribute to ChD.

For a pair of interacting A3R0C0 molecules, ChD first occurs in terms of type
(2.10) such as

Qa(2,−1)Qa(2,−1)Qa(3, 2)QA(2,−1)QA(2,−1)QA(3, 2)D−17. (5.2)

The ChD part in Qa(2,−1)Qa(2,−1)Qa(3, 2) varies as

(
e3

1r
7
1

) 3∑
k=1

3∑
p=1

3∑
t=1

Mkpt exp
[
i(2φt − φp − φk)

]
, (5.3)
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where Mkpt = 1 when k 6= p 6= t 6= k, and 0 otherwise. Setting φ1 = 0, having
−π < φt < π for t = 2, 3, and recalling (2.9), one finds the imaginary part of (5.3) to
vary as

2 sin
[
(1/2)(φ2 + φ3)

]
cos
[
(3/2)(φ2 − φ3)

]
− sin(φ2 + φ3). (5.4)

If two interbond angles are equal (thus, not A3R0C0) the molecular coordinate system
can be such that (φ2 + φ3) = 0, making (5.4) zero, implying no ChD. For A3R0C0

molecules, (φ2 + φ3) 6= 0 always as long as φ1 = 0. To produce the enantiomer
one reflects molecule a with respect to the plane containing ~S and ~r1, thus keeping
φ1 zero and reversing the signs of φ2 and φ3; consequently (5.4) changes sign, thus
demonstrating ChD.

For a pair of A0R3C0 molecules, the leading ChD terms arise not from (5.2),
since permuting indices k and p leaves (r2

kr
2
pr

3
t ) unchanged, but from terms such as

Qa(2,−1)Qa(3,−1)Qa(4, 2)QA(2,−1)QA(3,−2)QA(4, 3)D−21, (5.5)

since permuting any pair of indices changes the value of (r2
kr

3
pr

4
t ).

For a pair of A0R2C2 molecules, where molecule A (and a) is such that r1 =
r2 6= r3 and e1 6= e2 = e3, ChD first arises from terms such as

Qa(1, 0)
[
Qa(2,−1)

]2
Qa(2, 2)QA(1, 0)

[
QA(2,−1)

]2
QA(2, 2)D−18, (5.6)

which contains factors proportional to [(e2
1e2e3)(r4

1r
2
2r3)] which changes value for any

permutation of a pair of indices.
If molecule a is of the A3R0C0 type and molecule A of the A0R3C0 type, ChD

first arises in terms such as

Qa(2,−1)Qa(2,−1)Qa(3, 2)QA(2,−1)QA(3,−2)QA(4, 3)D−19. (5.7)

For a pair of interacting A0R0C3 molecules, leading ChD terms arise from terms
such as[

Qa(1, 0)
]3[
Qa(2,−1)

]2
Qa(2, 2)

[
QA(1, 0)

]3[
QA(2,−1)

]2
QA(2, 2)D−24. (5.8)

Expression (5.8) contains terms proportional to (eke2
pe

3
t ) which changes value for any

given permutation of pairs of indices, since in the current case, e1 6= e2 6= e3 6= e1.
Returning back to [26], one sees that each triad of each molecule is of the A0R0C3 type
and that ChD varies as D−24 because, since no triad is the enantiomer of another, the
sum of the ChD terms is non-zero generally. Leading ChD terms involving all 4 charges
simultaneously (i.e., not derivable simply from intertriad interactions) occur in VaA;9,
contain terms in (eke2

pe
3
te

4
u), and vary as D−36. In the large D limit, D−36 � D−24,

confirming the earlier statement that intertriad interactions give the large D behavior
of ChD.
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6. Thermodynamic ChD due to dispersion forces

In the following, one rewrites the intermolecular interaction due to the LJ potential
in a framework similar to that presented for the ES interaction. Since, for a given
atom f , there are two LJ potential parameters εf and σf , the molecular multipoles
related to the dispersion forces involve various combinations of εf and σf . In addition,
since one is interested in the large D regime, only the attractive part of the LJ potential
is relevant in the following. Suppose atom f of molecule a interacts with atom F of
molecule A. ~D is the vector originating from the center of rotation of molecule A and
terminating at the center of rotation of molecule a. Thus the reciprocal of the distance
RfF between atoms f and F is given by

(RfF )−1 =
∞∑
n=0

∞∑
N=0

n<∑
u=−n<

C(n;N ;u)qf (n,u)qF (N ,−u)D−n−N−1, (6.1)

RfF =
∣∣~rf + ~D − ~rF

∣∣, (6.2)

qx(n,m) =Pmn (cos θx) exp(imφx). (6.3)

The factors C(n;N ;u) in (6.1) are complicated functions and are not essential in the
discussion. The attractive part of the LJ potential is

(RfF )−6 =
∞∑
n=0

∞∑
N=0

n<∑
r=−n<

∞∑
s=0

qf (n, r)qF (N ,−r)

×B(n,N , r, s)D−n−N−6−s. (6.4)

Since one is interested in the leading ChD terms, one focuses here only on the terms
where s = 0 in (6.4). Then the intermolecular LJ potential VLJ(a,A) can be approxi-
mated as

VLJ(a,A)≈
∞∑
n=0

∞∑
N=0

n<∑
m=−n<

6∑
v=0

Qa(n,m, v)QA(N ,−m, 6− v)

×B(n,N ,m, 0)D−n−N−6, (6.5)

Qx(n,m, v) =

(
6
v

)1/2 3∑
s=1

(2εs)
1/2σvsqs(n,m). (6.6)

In (6.6), s ranges from 1 to 3, because one is still considering 3CM’s where each
electric charge is replaced by an atom with its two LJ parameters. The lessons learned
in the previous sections can be extended easily to the current LJ potentials. Where
the ES ChD arising from the product of (h) QA’s varies as D−y, the corresponding
LJ ChD varies as D−y−5(h). For illustration, one returns to [3]; the triads under study
are of the A0R3C3 type, thus LJ ChD varies as D−21−5(3) = D−36.
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7. Conclusion

The above algebraic treatment presents useful qualitative results, namely that in-
terbond angle differences have a greater influence on ChD than bond length differences
which, in turn, have a greater influence on ChD than charge differences. These qual-
itative results are not easily deduced from intuition alone; otherwise, previous ChD
studies would have looked at A3R∗C∗ molecules instead of A0R0C3 or A0R3C3 mole-
cules (subscript ∗ denotes 0, 2, or 3). The above results can be used to study dilute
gases composed of chiral molecules and dilute solutions of electrolytes composed of
chiral anions (conjugate bases of chiral carboxylic acids, for example) or chiral cations
(chiral quartenary ammonium ions, for example). Two chiral cations (or two chiral
anions) in solution repel one another and the large D results may apply. By breaking
down multi-charged molecule/ions into a set of triads, one can easily investigate ChD
between various types of, say, chiral fullerene cages which have been the focus of
recent investigations [4].

Although neither the present study nor prior work investigated the specific role
of vibrational modes in intermolecular ChD, one expects bending modes to be more
important than stretching modes in affecting ChD, since a molecule can become of the
A3R∗C∗ type via bending modes; one find analogous results for radiation–molecule
interactions: studies of vibrational circular dichroism of propylene oxide [18,24] and
theoretical work [15] on NHDT showed that bending modes have much larger rotational
strengths than stretching modes. Also, since bond length differences have greater
importance in ChD than charge differences, one expects molecular quantum electronic
transitions, which leave internuclear distances unchanged, to have a much smaller role
in affecting ChD than vibrational modes; one finds analogous results for radiation–
molecule interactions: in the theory of dispersion-induced circular dichroism [28],
vibronic state transitions play a much greater role than pure electronic state transitions.
Thus, although there may not be a unified mode of physical chiral measure [13], further
work on the decomposition of asymmetry into its various components (charge, nuclear
mass, bond lengths, interbond angles, etc.) may reveal some simple chiral measures
which encompass a large fraction of physical phenomena.

One can extend the above results to the case of polarizable molecules, where
the molecule-fixed multipoles are functions of the relative orientation of the mole-
cules. A perturbative study involves derivatives of the multipoles with respect to bond
lengths and azimuthal and polar angles; these derivatives can be expressed in terms of
“multipoles” involving 3 charges/polarizabilities if the molecules have at least 4 non-
central charges. The ChD analysis boils down to studying products of molecule-fixed
“multipoles”. One easily finds temperature-independent electrostatic ChD between po-
larizable molecules. Recently, ChD due to electric and magnetic multipole interactions
has been studied in the framework of quantum electrodynamics [16]; ChD is found
to vary as D−8 and has yet to be confirmed experimentally. Nonetheless, the role
the asymmetries involving angles, bond lengths and charges has not been scrutinized
in [16] and numerical studies involving the analysis of [16] may be most illuminating.
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